WiMi Announced DMD-SSD High-Speed Digital Hologram Playback

December 02, 2023 12:00 AM AEDT | By Cision
Follow us on Google News: https://kalkinemedia.com/resources/assets/public/images/google-news.webp

BEIJING, Dec. 1, 2023 /PRNewswire/ -- WiMi Hologram Cloud Inc. (NASDAQ:WIMI) ("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced that it developed DMD-SSD high-speed digital hologram playback technology. The technology makes full use of the advantages of digital micromirror devices (DMDs) and solid state drives (SSDs), and realizes high-speed reconstruction and high quality of complex 3D objects containing millions of point clouds by using synthetic color CGH and binary CGH packing technology, as well as space-time division multiplexing technology. Dedicated to solving the challenges of storage, computation and playback efficiency in the past hologram technology, it provides a new direction for the future development of hologram technology.

WiMi's DMD-SSD high-speed digital hologram playback technology is based on DMDs and SSDs, combining synthetic color CGH and binary CGH packing techniques and space-time division multiplexing for high-speed, efficient holographic video storage, computation and playback. The following is a summary of the technical framework of the technology:

DMD: DMD is one of the key components of the technology to achieve high-speed holographic video playback. The DMD panel and DMD controller comprise a module that can drive the GPU to output color images. The DMD enables high-speed calculation of holograms and drives the DMD panel as a spatial light modulator (SLM) for display.

SSD: SSD is used as a storage medium with fast data reading and storage capability. All computational holograms (CGH) for holographic video are pre-computed and stored in the SSD. Such storage supports high-speed playback of holographic videos by reducing data access time, allowing each packed frame to be quickly loaded and decompressed.

High-speed CGH computation: High-speed CGH computation is required to achieve visual persistence effects. The synthetic color CGH generates synthetic color CGH by synthesizing six RGB binary CGHs, which is used to drive the DMD panel as SLM, while the binary CGH packing technology is used to reduce the amount of data stored in SSDs and optimize the computational efficiency of holographic video.

Spatio-temporal multiplexing technique: The original 3D model is spatially divided into many sub-objects, by means of electro-holography. In each frame, the CGHs of the corresponding sub-objects Div-1 to Div-N are generated using the spatio-temporal division multiplexing technique and displayed on the SLM to realize the 3D image reconstruction of each sub-object.

The technical framework of WiMi's DMD-SSD high-speed digital hologram playback technology makes full use of the advantages of DMD and SSD, and realizes highly efficient and clear hologram video playback through high-speed CGH computation and space-time division multiplexing technology.

Data pre-processing and storage: Data pre-processing and segmentation are performed for 3D objects containing many object points. The original 3D model is spatially divided into multiple sub-objects and corresponding CGHs are generated for each sub-object. these CGH data are pre-calculated and stored in SSDs, and the packing technique of binary CGHs is utilized to reduce the amount of stored data in order to optimize the storage space and improve the reading efficiency.

High-speed CGH computation and synthesis of color CGH: This adopts several optimization strategies to improve computational efficiency. First, a high-performance computer system is utilized for CGH computation, which reduces the time cost of CGH computation by optimizing the algorithm and computation process. Second, a synthetic color CGH technique is incorporated to synthesize six RGB binary CGHs into one CGH, which reduces the amount of computation and improves computational efficiency. In addition, in the pre-processing stage, the amount of data required for computation is reduced by spatial segmentation and data processing of the 3D model, which further optimizes the CGH computation process. Through the combined application of these optimization strategies, the technique successfully achieves high-speed CGH computation, which provides strong support for the real-time generation of high-definition holographic videos.

The realization of spatio-temporal multiplexing: In each frame, the space of the original 3D model is partitioned into many sub-objects, the corresponding CGH is generated for each sub-object, and the 3D image of each sub-object is reconstructed and displayed on the SLM through the collaborative work of the DMD panel and the DMD controller. Through the spatio-temporal multiplexing technique, the degradation of 3D video reconstructed from 3D objects containing many object points is avoided, and the image quality of the holographic video is guaranteed.

DMD-SSD: The pre-calculated CGH data stored in SSD is converted into high-definition, high-quality holographic video through high-speed data loading and decompression, fast CGH calculation and synthesized color CGH technology. The DMD, as one of the key components, drives the SLM to display the synthesized color CGH, which realizes the high-speed digital electronic playback of holographic video.

WiMi's DMD-SSD high-speed digital hologram playback technology needs to be further optimized and improved. In terms of technology, the speed and efficiency of CGH computation are improved by optimizing the algorithm and computation process, and the computation cost is further reduced. In addition, research on holographic video data compression and storage is strengthened to further improve the efficiency of data storage and reading. Through continuous technical optimization and improvement, the performance and reliability of the technology can be further enhanced to expand its application areas and market prospects. With the continuous development and maturity of hologram technology, WiMi's DMD-SSD high-speed digital hologram playback technology is expected to become an important breakthrough point and technical support in the field of holograms. More innovative applications and products based on this technology are expected to emerge in the future.

As an emerging hologram technology, DMD-SSD high-speed digital electronic holographic playback makes full use of the advantages of digital micromirror devices and solid-state drives, and successfully realizes high-speed, high-definition holographic video storage, computation and playback by means of the synthesized color CGH and binary CGH packing technology, as well as space-temporal multiplexing technology. The development and realization of this technology effectively solves the pain points of storage, calculation and playback efficiency in the past hologram technology, and brings breakthroughs and possibilities for the application of hologram technology.

In the future, WiMi's DMD-SSD high-speed digital hologram playback technology is expected to play a more extensive role in medical imaging, industrial design, virtual reality and augmented reality, bringing a clearer and more accurate 3D imaging experience to these fields. Meanwhile, through continuous technical optimization and improvement, the technology is expected to enhance the calculation speed, data storage efficiency and image quality, further expanding its application fields and market prospects. Through continuous innovation and industrialization, DMD-SSD high-speed digital hologram playback technology will bring broader prospects and opportunities for the future development of hologram technology, and help hologram technology to become more popular.

About WIMI Hologram Cloud

WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.

Safe Harbor Statements

This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.

Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Pty Ltd (Kalkine Media, we or us), ACN 629 651 672 and is available for personal and non-commercial use only. The principal purpose of the Content is to educate and inform. The Content does not contain or imply any recommendation or opinion intended to influence your financial decisions and must not be relied upon by you as such. Some of the Content on this website may be sponsored/non-sponsored, as applicable, but is NOT a solicitation or recommendation to buy, sell or hold the stocks of the company(s) or engage in any investment activity under discussion. Kalkine Media is neither licensed nor qualified to provide investment advice through this platform. Users should make their own enquiries about any investments and Kalkine Media strongly suggests the users to seek advice from a financial adviser, stockbroker or other professional (including taxation and legal advice), as necessary. Kalkine Media hereby disclaims any and all the liabilities to any user for any direct, indirect, implied, punitive, special, incidental or other consequential damages arising from any use of the Content on this website, which is provided without warranties. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media. Some of the images/music that may be used on this website are copyright to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music used on this website unless stated otherwise. The images/music that may be used on this website are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have used reasonable efforts to accredit the source wherever it was indicated as or found to be necessary.

Two ASX Listed Stocks Giving Bullish Indications

Recent Articles

Investing Tips

Previous Next
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.