ASX-Dividend-Report-Banner

MANA Researchers Realize High-performance Physical Reservoir Computing with Multi-detection Chaotic Spin Wave Interference

October 03, 2023 07:00 PM AEDT | By Cision
Follow us on Google News: https://kalkinemedia.com/resources/assets/public/images/google-news.webp
 MANA Researchers Realize High-performance Physical Reservoir Computing with Multi-detection Chaotic Spin Wave Interference
Image source: Kalkine Media

TSUKUBA, Japan, Oct. 3, 2023 /PRNewswire/ -- Researchers from the Research Center for Materials Nanoarchitectonics (MANA) present the first experimental demonstration of a physical reservoir computing system based on spin wave interference.

Image: https://cdn.kyodonewsprwire.jp/prwfile/release/M105739/202309209888/_prw_PI1fl_VtMldn86.jpg

Novel technologies are shaping the modern world, and artificial intelligence (AI) systems are expected to play an important role in this transformation. Accordingly, demand for compact AI devices with low power consumption and high computational performance is growing rapidly. Recently, physical reservoir computing, which relies on a physical system to efficiently process information, has emerged as a promising technology for ubiquitous AI implementation. To be considered suitable for reservoir computing, the physical system must possess nonlinearity, short-term memory, and the ability to map in high dimensions. Notably, spin wave interference in ferromagnetic materials satisfies all three criteria and is considered a promising candidate for efficient reservoir computing. However, its experimental realization has remained elusive so far.

Now, a research team led by Principal Investigator Kazuya Terabe from MANA has experimentally demonstrated a reservoir computing system based on multi-detection nonlinear spin wave interference for the first time. Their study involved Dr. Wataru Namiki as the first author and Dr. Takashi Tsuchiya as the corresponding author.

The team utilized an yttrium iron garnet single crystal with multi-antennas, which excited and detected multi-spin waves. The physical reservoir computing system showed excellent performance for a hand-written digit recognition task, second-order nonlinear dynamical tasks, and nonlinear autoregressive moving average (NARMA); specifically, a maximum testing accuracy rate of 89.6% for hand-written digit recognition and normalized mean square errors (MSEs) of 8.37 x 10 to the power of minus 5 and 1.81 x 10 to the power of minus 2 for the nonlinear dynamical tasks and NARMA2, respectively. Notably, the MSEs are the best figures reported for any experimental physical reservoir.

"The high performance can be attributed to a high nonlinearity and a large memory capacity of the multi-detection chaotic spin wave interference system. It can thus contribute to the implementation of integrated physical reservoir systems with real-world applications," concludes Dr. Tsuchiya.

Research Highlights Vol. 85
https://www.nims.go.jp/mana/research/highlights/vol85.html

MANA Research Highlights
https://www.nims.go.jp/mana/ebulletin/index.html


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Pty Ltd (Kalkine Media, we or us), ACN 629 651 672 and is available for personal and non-commercial use only. The principal purpose of the Content is to educate and inform. The Content does not contain or imply any recommendation or opinion intended to influence your financial decisions and must not be relied upon by you as such. Some of the Content on this website may be sponsored/non-sponsored, as applicable, but is NOT a solicitation or recommendation to buy, sell or hold the stocks of the company(s) or engage in any investment activity under discussion. Kalkine Media is neither licensed nor qualified to provide investment advice through this platform. Users should make their own enquiries about any investments and Kalkine Media strongly suggests the users to seek advice from a financial adviser, stockbroker or other professional (including taxation and legal advice), as necessary. Kalkine Media hereby disclaims any and all the liabilities to any user for any direct, indirect, implied, punitive, special, incidental or other consequential damages arising from any use of the Content on this website, which is provided without warranties. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media. Some of the images/music that may be used on this website are copyright to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music used on this website unless stated otherwise. The images/music that may be used on this website are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have used reasonable efforts to accredit the source wherever it was indicated as or found to be necessary.

AU_advertise

Advertise your brand on Kalkine Media

Recent Articles

Investing Tips

Previous Next
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.