ASX-Dividend-Report-Banner

Lunit to Showcase 7 Studies at AACR 2024: Unveiling AI Innovations in HER2 Expression-Mutation Analysis and CNTN4 Biomarker Identification

April 02, 2024 12:00 AM AEDT | By Cision
Follow us on Google News: https://kalkinemedia.com/resources/assets/public/images/google-news.webp
 Lunit to Showcase 7 Studies at AACR 2024: Unveiling AI Innovations in HER2 Expression-Mutation Analysis and CNTN4 Biomarker Identification
Image source: Kalkine Media

- Lunit's AACR 2024 presentations to spotlight HER2 mutation insights and CNTN4's role in immunotherapy success, pioneering next-gen personalized treatment approaches, supported by the AI-powered Lunit SCOPE suite

SEOUL, South Korea, April 1, 2024 /PRNewswire/ -- Lunit (KRX:328130.KQ), a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, today announced the presentation of seven studies at the American Association for Cancer Research (AACR) 2024 Annual Meeting in San Diego, California, from April 5 to 10.

Lunit to Showcase 7 Studies at AACR 2024
Lunit to Showcase 7 Studies at AACR 2024

In a poster presentation, Lunit's AI-powered HER2 analyzer, Lunit SCOPE HER2's precision shines through its analysis of 194,259 pan-cancer samples, correlating different ERBB2 mutations with changes in HER2 protein expression. This AI-powered assessment successfully identified key mutation-expression correlations, particularly focusing on exon 20 insertions (ex20ins) and S310x mutations across a variety of cancers, including NSCLC, urothelial, and breast cancers.

Through detailed HER2 intensity examination, the AI analysis highlighted that, among ERBB2-mutated cases with HER2 IHC images, a higher proportion of HER2 3+ tumor cells was observed in S310x and ex20ins cases compared to others. Similarly, high HER2 expression was observed in both S301x and ex20ins cases compared to other mutation cases. The findings suggest that understanding these mutation-expression relationships could improve the prediction of treatment responses, enabling a step forward in the development of more personalized and precise therapeutic strategies for cancer patients with ERBB2 mutations. The study also indicates the potential of AI in enhancing the precision of cancer treatment through the identification of genetic alterations that influence protein levels.

In a collaborative study with Genome & Company, a clinical-stage biotechnology specializes in anti-cancer therapeutic development, Lunit leveraged its AI-powered immunohistochemistry (IHC) analyzer to investigate the expression of Contactin-4 (CNTN4) and its relationship with PD-L1 across 18 types of cancers. CNTN4, which is mainly expressed in tumor cells, is known to reduce T-cell activation and responsiveness to tumors.

The analysis of 795 pan-cancer tissue samples revealed an important inverse correlation between CNTN4 expression and PD-L1 levels. When PD-L1 intensity was ≥ 30%, 50%, 75%, and 90%, CNTN4 was observed in 42.4% (337/795), 25.5% (203/795), 11.4% (91/795), and 5.2% (41/795) of cases, respectively. This insight positions CNTN4 as a promising target for immunotherapy, particularly in cancers that exhibit low PD-L1 expression.

Another study conducted with Genome & Company focused on the correlation between the efficacy of pembrolizumab treatment and CNTN4 expression in gastric cancer patients. This study categorized patients based on CNTN4 and PD-L1 expression levels. The results indicated that patients with low CNTN4 expression and high PD-L1 levels were more likely to respond favorably to pembrolizumab, showing a 64.3% objective response rate (ORR). Conversely, patients exhibiting both high CNTN4 and PD-L1 expression demonstrated a 0% ORR, with non-responders presenting lower PD-L1 expression and higher CNTN4 levels compared to responders. These findings not only highlight CNTN4's potential as a predictive biomarker for immunotherapy response but also underscore the pivotal role of AI-powered analytics in identifying novel biomarkers.

"We are excited to present our groundbreaking studies at AACR 2024, illustrating the profound impact of the Lunit SCOPE suite on cancer research and treatment," said Brandon Suh, CEO of Lunit. "Our findings, particularly the discovery of key mutation-expression correlations by Lunit SCOPE HER2 and the potential of CNTN4 as a novel biomarker for immunotherapy responsiveness, underscore our commitment to transforming cancer care. These studies not only highlight our pioneering role in leveraging AI to enhance precision medicine but also pave the way into the future of oncology - where treatment is not just personalized but predictive, ensuring the best possible outcomes for patients worldwide. We're proud to contribute to this transformative journey, marking a significant milestone in our mission to fight cancer with AI."

In addition to the studies above, Lunit will present four more studies at this year's AACR, showcasing the diverse capabilities of Lunit SCOPE IO, Lunit SCOPE HER2, and an AI-based CT image analyzer combining analysis of CT scans with digital pathology analysis to predict response to checkpoint therapy.

Visit Lunit at booth 808 to explore how the Lunit SCOPE suite is revolutionizing oncology research and clinical practice.

Presentations at AACR 2024 featuring Lunit SCOPE include:

About Lunit

Founded in 2013, Lunit is a deep learning-based medical AI company on a mission to conquer cancer. We are committed to harnessing AI to ensure accurate diagnosis and optimal treatment for each cancer patient using AI-powered medical image analytics and AI biomarkers.

As a medical AI company grounded on clinical evidence, our findings are presented in major peer-reviewed journals, such as the Journal of Clinical Oncology and the Lancet Digital Health, and global conferences, including ASCO and RSNA.

After receiving FDA clearance and the CE Mark, our flagship Lunit INSIGHT suite is clinically used in approximately 3,000+ hospitals and medical institutions across 40+ countries. Lunit is headquartered in Seoul, South Korea, with offices and representatives worldwide. For more information, please visit lunit.io.

About Lunit SCOPE

Lunit SCOPE is a suite of AI-powered software that analyzes tissue slide images for digital pathology and AI biomarker development, aiming to optimize workflow and facilitate more accurate and predictive clinical data for clinicians and researchers.

Lunit SCOPE platform offers multiple AI-powered tissue analysis products and assays that can streamline digital pathology workflow and diagnostics and enhance the drug development process.

Lunit SCOPE IO analyzes the tumor microenvironment (TME) based on H&E analysis and provides AI-based predictive clinical outcome information. In addition, AI-driven Immunohistochemistry (IHC) slide analysis services are offered through products such as Lunit SCOPE PD-L1, Lunit SCOPE HER2, Lunit SCOPE ER/PR, and others.


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Pty Ltd (“Kalkine Media, we or us”), ACN 629 651 672 and is available for personal and non-commercial use only. The principal purpose of the Content is to educate and inform. The Content does not contain or imply any recommendation or opinion intended to influence your financial decisions and must not be relied upon by you as such. Some of the Content on this website may be sponsored/non-sponsored, as applicable, but is NOT a solicitation or recommendation to buy, sell or hold the stocks of the company(s) or engage in any investment activity under discussion. Kalkine Media is neither licensed nor qualified to provide investment advice through this platform. Users should make their own enquiries about any investments and Kalkine Media strongly suggests the users to seek advice from a financial adviser, stockbroker or other professional (including taxation and legal advice), as necessary.
The content published on Kalkine Media also includes feeds sourced from third-party providers. Kalkine does not assert any ownership rights over the content provided by these third-party sources. The inclusion of such feeds on the Website is for informational purposes only. Kalkine does not guarantee the accuracy, completeness, or reliability of the content obtained from third-party feeds. Furthermore, Kalkine Media shall not be held liable for any errors, omissions, or inaccuracies in the content obtained from third-party feeds, nor for any damages or losses arising from the use of such content.
Kalkine Media hereby disclaims any and all the liabilities to any user for any direct, indirect, implied, punitive, special, incidental or other consequential damages arising from any use of the Content on this website, which is provided without warranties. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media. Some of the images/music that may be used on this website are copyrighted to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music used on this website unless stated otherwise. The images/music that may be used on this website are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have made reasonable efforts to accredit the source wherever it was indicated as or found to be necessary.

This disclaimer is subject to change without notice. Users are advised to review this disclaimer periodically for any updates or modifications.

Recent Articles

Investing Tips

Previous Next
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.