Advancing Organic Circuits: MANA Study Changes Current Computing Architecture

February 22, 2024 07:00 PM AEDT | By Cision
Follow us on Google News: https://kalkinemedia.com/resources/assets/public/images/google-news.webp

TSUKUBA, Japan, Feb. 22, 2024 /PRNewswire/ -- Researchers from the Research Center for Materials Nanoarchitectonics (MANA) have developed a novel organic logic inverter circuit capable of handling four logical states. This advancement improves the data processing capabilities of organic integrated circuits.

Image: https://cdn.kyodonewsprwire.jp/prwfile/release/M105739/202402156623/_prw_PI1fl_3PVnyta8.jpg

Organic integrated circuits, constructed with small molecules or polymers, show great potential for human-friendly interactive mobile applications. These circuits are lightweight, flexible, biocompatible, and cost-effective. As a result, they are important for the development of radio-frequency identification tags, smart displays, and healthcare sensors. However, traditional organic circuits are incompatible with modern lithographic techniques and thus suffer from low integration density and poor data-processing capability. To address this issue, ongoing efforts are focused on developing multivalued logic circuits based on antiambipolar transistors (AATs).

In a recent breakthrough, a research team from MANA, including principal researcher Ryoma Hayakawa, group leader Yutaka Wakayama, and JSPS fellow Debdatta Panigrahi, has successfully created an organic quaternary logic inverter circuit that can handle four logical states, a notable advancement beyond the traditional three found in ternary logic circuits. The organic quaternary logic inverter circuit was constructed by connecting an AAT, comprising two "n"-type organic semiconductors and a "p"-type organic semiconductor, to a double-layered "n"-type transistor in series.

Dr. Hayakawa explains: "We have developed an organic AAT, which exhibited two distinct negative differential transconductance (NDT) characteristics. The bi-NDT characteristics were achieved via the incorporation of two lateral organic heterojunctions. Each heterojunction could generate an NDT characteristic, which instigated the bi-NDT behavior in the AATs." This unique bi-NDT feature enabled the team to produce a quaternary inverter that can handle four logic states without increasing the number of transistors. This innovation can, thus, significantly improve the data-processing capability of organic integrated circuits.

This quaternary inverter achieves the four distinguishable logic states of "1," "2/3," "1/3" and "0" at a relatively low driving voltage of 14 V, making it suitable for energy-efficient logic applications. The proposed circuit thus advances the capabilities of organic circuits for more demanding computing applications.

Research Highlights Vol. 88
https://www.nims.go.jp/mana/research/highlights/vol88.html

Official website:
https://www.nims.go.jp/mana/index.html


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Pty Ltd (“Kalkine Media, we or us”), ACN 629 651 672 and is available for personal and non-commercial use only. The principal purpose of the Content is to educate and inform. The Content does not contain or imply any recommendation or opinion intended to influence your financial decisions and must not be relied upon by you as such. Some of the Content on this website may be sponsored/non-sponsored, as applicable, but is NOT a solicitation or recommendation to buy, sell or hold the stocks of the company(s) or engage in any investment activity under discussion. Kalkine Media is neither licensed nor qualified to provide investment advice through this platform. Users should make their own enquiries about any investments and Kalkine Media strongly suggests the users to seek advice from a financial adviser, stockbroker or other professional (including taxation and legal advice), as necessary.
The content published on Kalkine Media also includes feeds sourced from third-party providers. Kalkine does not assert any ownership rights over the content provided by these third-party sources. The inclusion of such feeds on the Website is for informational purposes only. Kalkine does not guarantee the accuracy, completeness, or reliability of the content obtained from third-party feeds. Furthermore, Kalkine Media shall not be held liable for any errors, omissions, or inaccuracies in the content obtained from third-party feeds, nor for any damages or losses arising from the use of such content.
Kalkine Media hereby disclaims any and all the liabilities to any user for any direct, indirect, implied, punitive, special, incidental or other consequential damages arising from any use of the Content on this website, which is provided without warranties. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media. Some of the images/music that may be used on this website are copyrighted to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music used on this website unless stated otherwise. The images/music that may be used on this website are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have made reasonable efforts to accredit the source wherever it was indicated as or found to be necessary.

This disclaimer is subject to change without notice. Users are advised to review this disclaimer periodically for any updates or modifications.

Two ASX Listed Stocks Giving Bullish Indications

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.