Machine learning methods to protect banks from the risks of complex investment products

January 04, 2024 11:42 PM AEDT | By EIN Presswire
 Machine learning methods to protect banks from the risks of complex investment products
Image source: EIN Presswire

CHINA, January 4, 2024 /EINPresswire.com/ -- A new method is introduced for the management of risks of complex investment products in the investment banking area. This method is based on modern machine learning techniques (specifically, deep contextual bandits) and addresses the risk reporting requirements and the availability of training data in real-world investment firms. While being simple, the new method is demonstrated to outperform benchmark systems in terms of efficiency, adaptability and accuracy under realistic conditions.

Artificial Intelligence (AI) is frequently touted as a silver bullet to solve complex modeling problems. Among its many applications, it has been investigated as a tool to manage risks of complex investment products—so-called derivative contracts—in the investment banking area. Despite the multiple positive reports in this area, concerns have been raised about their practical applicability.

In a new study published in The Journal of Finance and Data Science, a team of researchers from Switzerland and the US explored whether reinforcement learning RL agents can be trained to hedge derivative contracts.

"It should come as no surprise that if you train an AI on simulated market data, it will work well on markets that are reflective of the simulation, and the data consumption of many AI systems is outrageous," explains Loris Cannelli, first author of the study and a researcher at IDSIA in Switzerland.

To overcome the lack of training data, researchers tend to assume an accurate market simulator to train their AI agents. However, setting up such a simulator leads to a classical financial engineering problem: choosing a model to simulate from and its calibration, and making the AI-based approach much like the standard Monte Carlo methods in use for decades.

“Such an AI can also be hardly considered model-free: this would apply only if enough market data was available for training, and this is rarely the case in realistic derivative markets,” says Cannelli.

The study, a collaboration between IDSIA and investment bank of UBS, was based on so-called Deep Contextual Bandits, which are well-known in RL for their data-efficiency and robustness. Motivated by operational realities of real-world investment firms, it incorporates end of day reporting requirements and is characterized by a significantly lower training data requirement compared to conventional models, and adaptability to the changing markets.

"In practice, it's the availability of data and operational realities, such as requirements to report end-of-day risk figures, that are the main drivers that dictate the real work at the bank, instead of ideal agent training," clarifies senior author Oleg Szehr, whom, prior to his appointment at IDSIA, was a staff member at several investment banks. “One of the strengths of the newly developed model is that it conceptually resembles business operations at an investment firm and thus is applicable from a practical perspective.”

Although the new method is simple, rigorous assessment of model performance demonstrated that the new method outperforms benchmark systems in terms of efficiency, adaptability and accuracy under realistic conditions. “As often the case in real life, less is more—the same applies to risk management too,” concludes Cannelli.

DOI
10.1016/j.jfds.2023.100101

Original Source URL
https://doi.org/10.1016/j.jfds.2023.100101

Funding information
This work was supported by UBS project LP-15403 / CW-202427

Lucy Wang
BioDesign Research
email us here


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Pty Ltd (Kalkine Media, we or us), ACN 629 651 672 and is available for personal and non-commercial use only. The principal purpose of the Content is to educate and inform. The Content does not contain or imply any recommendation or opinion intended to influence your financial decisions and must not be relied upon by you as such. Some of the Content on this website may be sponsored/non-sponsored, as applicable, but is NOT a solicitation or recommendation to buy, sell or hold the stocks of the company(s) or engage in any investment activity under discussion. Kalkine Media is neither licensed nor qualified to provide investment advice through this platform. Users should make their own enquiries about any investments and Kalkine Media strongly suggests the users to seek advice from a financial adviser, stockbroker or other professional (including taxation and legal advice), as necessary. Kalkine Media hereby disclaims any and all the liabilities to any user for any direct, indirect, implied, punitive, special, incidental or other consequential damages arising from any use of the Content on this website, which is provided without warranties. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media. Some of the images/music that may be used on this website are copyright to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music used on this website unless stated otherwise. The images/music that may be used on this website are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have used reasonable efforts to accredit the source wherever it was indicated as or found to be necessary.


AU_advertise

Advertise your brand on Kalkine Media

Sponsored Articles


Investing Ideas

Previous Next
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.