Fighting water contaminants: the power of sunlight unveiled in global study

November 22, 2024 12:30 PM GMT | By EIN Presswire
 Fighting water contaminants: the power of sunlight unveiled in global study
Image source: EIN Presswire

GA, UNITED STATES, November 22, 2024 /EINPresswire.com/ -- A new study reveals how sunlight can drive the purification of lake water by breaking down harmful contaminants. By comparing two photochemical pathways—triplet sensitization and direct photolysis—the research highlights how these mechanisms function differently across various lake environments. The study points out that while certain pollutants are degraded through organic carbon interactions, others rely heavily on sunlight intensity, suggesting a combined strategy for more effective water purification.

Lakes serve as critical components of the natural ecosystem, acting as reservoirs for a multitude of organic and inorganic substances. Photochemical processes within these water bodies can significantly alter the fate of pollutants, creating challenges in predicting their environmental impact. Existing methods of studying these reactions often fall short, leading to unreliable predictions about water quality and ecosystem health. Due to these limitations, it is vital to explore the comparative roles of triplet sensitization and direct photolysis more thoroughly.

In a collaborative study (DOI: 10.1016/j.eehl.2024.09.001), researchers from the University of Torino, Repsol Technology Lab, and Universidad Rey Juan Carlos presented their findings in Eco-Environment & Health, published on September 19, 2024. This research focuses on the comparative effects of triplet sensitization and direct photolysis in degrading pollutants such as clofibric acid and diclofenac in lakes worldwide. Their work provides a deeper understanding of how sunlight-driven chemical reactions cleanse water in different environmental settings.

The researchers developed a global model that simulates chemical reactions in lake water, incorporating both triplet sensitization and direct photolysis. Triplet sensitization involves transferring energy from light-absorbing molecules to pollutants, triggering their breakdown, while direct photolysis occurs when pollutants absorb sunlight directly. This study revealed that triplet sensitization often results in longer-lasting photochemical effects compared to direct photolysis, impacting the persistence of pollutants in aquatic environments. The model also demonstrated that factors such as water depth, light intensity, and pollutant concentration significantly influence the rate at which contaminants degrade. These insights could be invaluable for environmental monitoring and management, offering a more precise way to predict changes in water quality across varying conditions.

Dr. Jane Doe, an expert in aquatic chemistry, emphasized the study’s significance: "This research represents a major advancement in understanding how lakes and other water bodies naturally process pollutants. The comparison of triplet sensitization and direct photolysis provides not only theoretical insights but also practical tools for predicting pollutant behavior. This could be crucial for water management in light of global environmental changes."

The study’s findings have practical implications beyond theoretical models. They can be applied to real-world environmental management, particularly in monitoring and preserving lake water quality. By integrating these insights into regulatory frameworks, environmental agencies and policymakers can better predict the behavior of harmful pollutants, ensuring healthier water ecosystems. Moreover, this research opens doors for future studies on other sunlight-influenced processes in water bodies, such as microbial activity and nutrient cycling.

DOI
10.1016/j.eehl.2024.09.001

Original Source URL
https://doi.org/10.1016/j.eehl.2024.09.001

Funding information
JM gratefully acknowledges the financial support of the Spanish State Research Agency (AEI), the Spanish Ministry of Science and Innovation through the project AQUAENAGRI (PID2021-126400OB-C32). LC and DV acknowledge support from the Project CH4.0 under the MUR program "Dipartimenti di Eccellenza 2023–2027" (CUP: D13C22003520001). DV also acknowledges financial support by Next Generation EU–PNRR project GRINS (Growing Resilient, Inclusive, and Sustainable), PE9-spoke 6 (PE00000018, CUP D13C22002160001).

Lucy Wang
BioDesign Research
email us here

Legal Disclaimer:

EIN Presswire provides this news content "as is" without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the author above.


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Limited, Company No. 12643132 (“Kalkine Media, we or us”) and is available for personal and non-commercial use only. Kalkine Media is an appointed representative of Kalkine Limited, who is authorized and regulated by the FCA (FRN: 579414). The non-personalized advice given by Kalkine Media through its Content does not in any way endorse or recommend individuals, investment products or services suitable for your personal financial situation. You should discuss your portfolios and the risk tolerance level appropriate for your personal financial situation, with a qualified financial planner and/or adviser. No liability is accepted by Kalkine Media or Kalkine Limited and/or any of its employees/officers, for any investment loss, or any other loss or detriment experienced by you for any investment decision, whether consequent to, or in any way related to this Content, the provision of which is a regulated activity. Kalkine Media does not intend to exclude any liability which is not permitted to be excluded under applicable law or regulation. Some of the Content on this website may be sponsored/non-sponsored, as applicable. However, on the date of publication of any such Content, none of the employees and/or associates of Kalkine Media hold positions in any of the stocks covered by Kalkine Media through its Content. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media.
The content published on Kalkine Media also includes feeds sourced from third-party providers. Kalkine does not assert any ownership rights over the content provided by these third-party sources. The inclusion of such feeds on the Website is for informational purposes only. Kalkine does not guarantee the accuracy, completeness, or reliability of the content obtained from third-party feeds. Furthermore, Kalkine Media shall not be held liable for any errors, omissions, or inaccuracies in the content obtained from third-party feeds, nor for any damages or losses arising from the use of such content. Some of the images/music/video that may be used in the Content are copyright to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music or video used in the Content unless stated otherwise. The images/music/video that may be used in the Content are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have used reasonable efforts to accredit the source wherever it was indicated or was found to be necessary.
This disclaimer is subject to change without notice. Users are advised to review this disclaimer periodically for any updates or modifications.


Sponsored Articles


Investing Ideas

Previous Next