New metalens lights the way for advanced control of quantum emission

August 08, 2023 09:37 AM -03 | By EIN Presswire
 New metalens lights the way for advanced control of quantum emission
Image source: EIN Presswire
FAYETTEVILLE, GA, USA, August 8, 2023/EINPresswire.com/ -- Structuring light emission, particularly from non-classical sources, is crucial for realizing practical high-dimensional quantum information processing. However, traditional methods rely on bulky optical elements with limited functionalities. Scientists have developed an elegant solution for controlling and manipulating dim light sources – down to the single photon level. The nanopatterned structure, a multifunctional metalens, could unleash the full potential of solid-state quantum light sources for advanced quantum photonic applications.

Quantum emission is pivotal to realising photonic quantum technologies. Solid-state single photon emitters (SPEs), such as hexagonal boron nitride (hBN) defects, operate at room temperature. They are highly desirable due to their robustness and brightness. The conventional way to collect photons from SPEs relies on a high numerical aperture (NA) objective lens or micro-structured antennas. While photon collection efficiency can be high, these tools cannot manipulate quantum emissions. Multiple bulky optical elements, such as polarisers and phase plates, are required to achieve any desired structuring of the emitted quantum light source.

In a new paper published in eLight, an international team of scientists led by Drs Chi Li and Haoran Ren from Monash University have developed a new multifunctional metalens for structuring quantum emissions from SPEs.

The ability to arbitrarily transform an optical beam in different spatial forms is essential for quantum light sources. Metasurfaces have transformed the landscape of photonic design. It has led to major technological advances from optical imaging and holography to LiDAR and molecular sensing.

Recently, the direct integration of nanoscale emitters into nanostructured resonators and metasurfaces has been designed to collect and demonstrate basic tailoring of the SPEs emission. These initial demonstrations constituted the necessity for flat optics to advance the manipulation of quantum emission.

The research team has addressed this issue by designing and engineering a multifunctional metalens. The new metalens was fabricated by Korean physicists Drs Jaehyuck Jang and Trevon Badloe and Professor Junsuk Rho at Pohang University of Science and Technology. It can simultaneously tailor the directionality, polarisation, and orbital angular momentum (OAM) degrees of freedom. They utilised the metalens to demonstrate a multidimensional structuring of quantum emission from SPEs in hBN, operating at room temperature.

The team demonstrated arbitrary shaping of the directionality of quantum emission. They also showed that different helical wavefronts could be added onto the metalens profile, leading to the generation of distinctive OAM modes in orthogonal polarisations of SPEs. The breakthrough experimental work was performed at the University of Technology Sydney and TMOS (an Australian Research Council Centre of Excellence) led by Professor Igor Aharonovich.

The demonstrated arbitrary wavefront shaping of quantum emission in multiple degrees of freedom could unleash the full potential of solid-state SPEs to be used as high-dimensional quantum sources for advanced quantum photonic applications.

The team’s new technology offers a new platform to use ultrathin meta-optics for arbitrary wavefront shaping of quantum emission in multiple degrees of freedom at room temperature. It may provide new insights into the field of quantum information science. The team believe that manipulating photon polarisations can have a significant impact on quantum cryptography and entanglement distribution with improved filtering. The polarisation separation is vital for the future use of hBN SPEs for polarisation entangled photon pair generation.

Future extension of the metalens could enable the generation of high-dimensional single-photon hybrid quantum states. Any future integration of structured SPE sources with a reliable transmission environment, such as optical fibres, could promise a quantum network with higher information capacity, robustness to noise and better security.
###
References
DOI
10.1186/s43593-023-00052-4
Original URL
https://doi.org/10.1186/s43593-023-00052-4
Funding information
This work was supported by the Australian Research Council and the Office of Naval Research Global, the Lee-Lucas Chair in Physics, the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO, the National Research Foundation (NRF) grants funded by the Ministry of Science and ICT of the Korean government, and the POSTECH Alchemist fellowship.
About eLight
eLight will primarily publish the finest manuscripts, broadly covering all optics, photonics and electromagnetics sub-fields. In particular, we focus on emerging topics and cross-disciplinary research related to optics.

Wendy Chen
TranSpread
+1 865-405-5638
email us here


Disclaimer

The content, including but not limited to any articles, news, quotes, information, data, text, reports, ratings, opinions, images, photos, graphics, graphs, charts, animations and video (Content) is a service of Kalkine Media Limited, Company No. 12643132 (Kalkine Media, we or us) and is available for personal and non-commercial use only. Kalkine Media is an appointed representative of Kalkine Limited, who is authorized and regulated by the FCA (FRN: 579414). The non-personalised advice given by Kalkine Media through its Content does not in any way endorse or recommend individuals, investment products or services suitable for your personal financial situation. You should discuss your portfolios and the risk tolerance level appropriate for your personal financial situation, with a qualified financial planner and/or adviser. No liability is accepted by Kalkine Media or Kalkine Limited and/or any of its employees/officers, for any investment loss, or any other loss or detriment experienced by you for any investment decision, whether consequent to, or in any way related to this Content, the provision of which is a regulated activity. Kalkine Media does not intend to exclude any liability which is not permitted to be excluded under applicable law or regulation. Some of the Content on this website may be sponsored/non-sponsored, as applicable. However, on the date of publication of any such Content, none of the employees and/or associates of Kalkine Media hold positions in any of the stocks covered by Kalkine Media through its Content. The views expressed in the Content by the guests, if any, are their own and do not necessarily represent the views or opinions of Kalkine Media. Some of the images/music/video that may be used in the Content are copyright to their respective owner(s). Kalkine Media does not claim ownership of any of the pictures displayed/music or video used in the Content unless stated otherwise. The images/music/video that may be used in the Content are taken from various sources on the internet, including paid subscriptions or are believed to be in public domain. We have used reasonable efforts to accredit the source wherever it was indicated or was found to be necessary.

Sponsored Articles


We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.